Aurora (astronomy)

An aurora (plural: auroras or aurorae) is a natural light display in the sky particularly in the high latitude (Arctic and Antarctic) regions, caused by the collision of energetic charged particles with atoms in the high altitude atmosphere (thermosphere). The charged particles originate in the magnetosphere and solar wind and, on Earth, are directed by the Earth's magnetic field into the atmosphere. Aurora is classified as diffuse or discrete aurora. Most aurorae occur in a band known as the auroral zone[1][2] which is typically 3° to 6° in latitudinal extent and at all local times or longitudes. The auroral zone is typically 10° to 20° from the magnetic pole defined by the axis of the Earth's magnetic dipole. During a geomagnetic storm, the auroral zone will expand to lower latitudes. The diffuse aurora is a featureless glow in the sky which may not be visible to the naked eye even on a dark night and defines the extent of the auroral zone. The discrete aurora are sharply defined features within the diffuse aurora which vary in brightness from just barely visible to the naked eye to bright enough to read a newspaper at night. Discrete aurorae are usually observed only in the night sky because they are not as bright as the sunlit sky. Aurorae occur occasionally poleward of the auroral zone as diffuse patches[3] or arcs (polar cap arcs[4]) which are generally invisible to the naked eye.

In northern latitudes, the effect is known as the aurora borealis (or the northern lights), named after the Roman goddess of dawn, Aurora, and the Greek name for the north wind, Boreas, by Pierre Gassendi in 1621.[5] Auroras seen near the magnetic pole may be high overhead, but from farther away, they illuminate the northern horizon as a greenish glow or sometimes a faint red, as if the Sun were rising from an unusual direction. Discrete aurorae often display magnetic field lines or curtain-like structures, and can change within seconds or glow unchanging for hours, most often in fluorescent green. The aurora borealis most often occurs near the equinoxes. The northern lights have had a number of names throughout history. The Cree call this phenomenon the "Dance of the Spirits". In Europe, in the Middle Ages, the auroras were commonly believed a sign from God (see Wilfried Schröder, Das Phänomen des Polarlichts, Darmstadt 1984).

Its southern counterpart, the aurora australis (or the southern lights), has almost identical features to the aurora borealis and changes simultaneously with changes in the northern auroral zone [6] and is visible from high southern latitudes in Antarctica, South America and Australia.

Aurorae occur on other planets. Similar to the Earth's aurora, they are visible close to the planet's magnetic poles.

Modern style guides recommend that the names of meteorological phenomena, such as aurora borealis, be uncapitalized.[7]

Contents

Video of the Aurora Australis taken by the crew of Expedition 28 on board the International Space Station. This sequence of shots was taken September 17, 2011 from 17:22:27 to 17:45:12 GMT, on an ascending pass from south of Madagascar to just north of Australia over the Indian Ocean.
Video of the Aurora Australis taken by the crew of Expedition 28 on board the International Space Station. This sequence of shots was taken September 7, 2011 from 17:38:03 to 17:49:15 GMT, from the French Southern and Antarctic Lands in the South Indian Ocean to southern Australia.
Video of the Aurora Australis taken by the crew of Expedition 28 on board the International Space Station. This sequence of shots was taken September 11, 2011 from 13:45:06 to 14:01:51 GMT, from a descending pass near eastern Australia, rounding about to an ascending pass to the east of New Zealand.

Auroral mechanism

Auroras are result from emissions of photons in the Earth's upper atmosphere, above 80 km (50 mi), from ionized nitrogen atoms regaining an electron, and oxygen and nitrogen atoms returning from an excited state to ground state. They are ionized or excited by the collision of solar wind and magnetospheric particles being funneled down and accelerated along the Earth's magnetic field lines; excitation energy is lost by the emission of a photon of light, or by collision with another atom or molecule:

oxygen emissions
Green or brownish-red, depending on the amount of energy absorbed.
nitrogen emissions
Blue or red. Blue if the atom regains an electron after it has been ionized. Red if returning to ground state from an excited state.

Oxygen is unusual in terms of its return to ground state: it can take three quarters of a second to emit green light and up to two minutes to emit red. Collisions with other atoms or molecules will absorb the excitation energy and prevent emission. Because the very top of the atmosphere has a higher percentage of oxygen and is sparsely distributed such collisions are rare enough to allow time for oxygen to emit red. Collisions become more frequent progressing down into the atmosphere, so that red emissions do not have time to happen, and eventually even green light emissions are prevented.

This is why there is a colour differential with altitude; at high altitude oxygen red dominates, then oxygen green and nitrogen blue/red, then finally nitrogen blue/red when collisions prevent oxygen from emitting anything. Green is the most common of all auroras. Behind it is pink, a mixture of light green and red, followed by pure red, yellow (a mixture of red and green), and lastly pure blue.

Auroras are associated with the solar wind, a flow of ions continuously flowing outward from the Sun. The Earth's magnetic field traps these particles, many of which travel toward the poles where they are accelerated toward Earth. Collisions between these ions and atmospheric atoms and molecules cause energy releases in the form of auroras appearing in large circles around the poles. Auroras are more frequent and brighter during the intense phase of the solar cycle when coronal mass ejections increase the intensity of the solar wind.[8]

Forms and magnetism

Typically the aurora appears either as a diffuse glow or as "curtains" that approximately extend in the east-west direction. At some times, they form "quiet arcs"; at others ("active aurora"), they evolve and change constantly. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field lines, suggesting that auroras are shaped by Earth's magnetic field. Indeed, satellites show electrons to be guided by magnetic field lines, spiraling around them while moving towards Earth.

The similarity to curtains is often enhanced by folds called "striations". When the field line guiding a bright auroral patch leads to a point directly above the observer, the aurora may appear as a "corona" of diverging rays, an effect of perspective.

Although it was first mentioned by Ancient Greek explorer/geographer Pytheas, Hiorter and Celsius first described in 1741 evidence for magnetic control, namely, large magnetic fluctuations occurred whenever the aurora was observed overhead. This indicates (it was later realized) that large electric currents were associated with the aurora, flowing in the region where auroral light originated. Kristian Birkeland (1908)[9] deduced that the currents flowed in the east-west directions along the auroral arc, and such currents, flowing from the dayside towards (approximately) midnight were later named "auroral electrojets" (see also Birkeland currents).

On 26 February 2008, THEMIS probes were able to determine, for the first time, the triggering event for the onset of magnetospheric substorms.[10] Two of the five probes, positioned approximately one third the distance to the moon, measured events suggesting a magnetic reconnection event 96 seconds prior to auroral intensification.[11] Dr. Vassilis Angelopoulos of the University of California, Los Angeles, the principal investigator for the THEMIS mission, claimed, "Our data show clearly and for the first time that magnetic reconnection is the trigger."[12]

Still more evidence for a magnetic connection are the statistics of auroral observations. Elias Loomis (1860) and later in more detail Hermann Fritz (1881)[13] and S. Tromholt (1882)[14] established that the aurora appeared mainly in the "auroral zone", a ring-shaped region with a radius of approximately 2500 km around Earth's magnetic pole. It was hardly ever seen near the geographic pole, which is about 2000 km away from the magnetic pole. The instantaneous distribution of auroras ("auroral oval"[1][2]) is slightly different, centered about 3–5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest towards the equator about an hour before midnight. The aurora can be seen best at this time, called magnetic midnight, which occurs when an observer, the magnetic pole in question and the Sun are in alignment

Solar wind and the magnetosphere

The Earth is constantly immersed in the solar wind, a rarefied flow of hot plasma (gas of free electrons and positive ions) emitted by the Sun in all directions, a result of the two-million-degree heat of the Sun's outermost layer, the corona. The solar wind usually reaches Earth with a velocity around 400 km/s, density around 5 ions/cm3 and magnetic field intensity around 2–5 nT (nanoteslas; Earth's surface field is typically 30,000–50,000 nT). These are typical values. During magnetic storms, in particular, flows can be several times faster; the interplanetary magnetic field (IMF) may also be much stronger.

The IMF originates on the Sun, related to the field of sunspots, and its field lines (lines of force) are dragged out by the solar wind. That alone would tend to line them up in the Sun-Earth direction, but the rotation of the Sun skews them (at Earth) by about 45 degrees, so that field lines passing Earth may actually start near the western edge ("limb") of the visible Sun.[15]

Earth's magnetosphere is formed by the impact of the solar wind on the Earth's magnetic field. It forms an obstacle to the solar wind, diverting it, at an average distance of about 70,000 km (11 Earth radii or Re),[16] forming a bow shock 12,000 km to 15,000 km (1.9 to 2.4 Re) further upstream. The width of the magnetosphere abreast of Earth, is typically 190,000 km (30 Re), and on the night side a long "magnetotail" of stretched field lines extends to great distances (> 200 Re).

The magnetosphere is full of trapped plasma as the solar wind passes the Earth. The flow of plasma into the magnetosphere increases with increases in solar wind density and speed, with increase in the southward component of the IMF and with increases in turbulence in the solar wind flow.[17] The flow pattern of magnetospheric plasma is from the magnetotail toward the Earth, around the Earth and back into the solar wind through the magnetopause on the day-side. In addition to moving perpendicular to the Earth's magnetic field, some magnetospheric plasma travel down along the Earth's magnetic field lines and lose energy to the atmosphere in the auroral zones. Magnetospheric electrons which are accelerated downward by field-aligned electric fields are responsible for the bright aurora features. The un-accelerated electrons and ions are responsible for the dim glow of the diffuse aurora.

Frequency of occurrence

North America
Eurasia
These NOAA maps of North America and Eurasia show the local midnight equatorward boundary of the aurora at different levels of geomagnetic activity. A Kp=3 corresponds to low levels of geomagnetic activity, while Kp=9 represents high levels.

Auroras are occasionally seen in temperate latitudes, when a magnetic storm temporarily grows the auroral oval. Large magnetic storms are most common during the peak of the eleven-year sunspot cycle or during the three years after that peak.[18][19] However, within the auroral zone the likelihood of an aurora occurring depends mostly on the slant of interplanetary magnetic field (IMF) lines (the slant is known as Bz), being greater with southward slants.

Geomagnetic storms that ignite auroras actually happen more often during the months around the equinoxes. It is not well understood why geomagnetic storms are tied to Earth's seasons while polar activity is not. But it is known that during spring and autumn, the interplanetary magnetic field and that of Earth link up. At the magnetopause, Earth's magnetic field points north. When Bz becomes large and negative (i.e., the IMF tilts south), it can partially cancel Earth's magnetic field at the point of contact. South-pointing Bz's open a door through which energy from the solar wind can reach Earth's inner magnetosphere.

The peaking of Bz during this time is a result of geometry. The IMF comes from the Sun and is carried outward with the solar wind. The rotation of the Sun causes the IMF to have a spiral shape called the Parker spiral. The southward (and northward) excursions of Bz are greatest during April and October, when Earth's magnetic dipole axis is most closely aligned with the Parker spiral.

However, Bz is not the only influence on geomagnetic activity. The Sun's rotation axis is tilted 8 degrees with respect to the plane of Earth's orbit. The solar wind blows more rapidly from the Sun's poles than from its equator, thus the average speed of particles buffeting Earth's magnetosphere waxes and wanes every six months. The solar wind speed is greatest – by about 50 km/s, on average – around 5 September and 5 March when Earth lies at its highest heliographic latitude.

Still, neither Bz nor the solar wind can fully explain the seasonal behavior of geomagnetic storms. Those factors together contribute only about one-third of the observed semiannual variations.

Auroral events of historical significance

The auroras that resulted from the "great geomagnetic storm" on both 28 August and 2 September 1859 are thought the most spectacular in recent recorded history. Balfour Stewart, in a paper[20][21] to the Royal Society on 21 November 1861, described both auroral events as documented by a self-recording magnetograph at the Kew Observatory and established the connection between the 2 September 1859 auroral storm and the Carrington-Hodgson flare event when he observed that "it is not impossible to suppose that in this case our luminary was taken in the act." The second auroral event, which occurred on 2 September 1859 as a result of the exceptionally intense Carrington-Hodgson white light solar flare on 1 September 1859 produced auroras so widespread and extraordinarily brilliant that they were seen and reported in published scientific measurements, ships' logs and newspapers throughout the United States, Europe, Japan and Australia. It was reported by the New York Times[22][23][24] that in Boston on Friday 2 September 1859 the aurora was "so brilliant that at about one o'clock ordinary print could be read by the light".[23][25][26] One o'clock Boston time on Friday 2 September, would have been 6:00 GMT and the self-recording magnetograph at the Kew Observatory was recording the geomagnetic storm, which was then one hour old, at its full intensity. Between 1859 and 1862, Elias Loomis published a series of nine papers on the Great Auroral Exhibition of 1859 in the American Journal of Science where he collected world wide reports of the auroral event. The aurora is thought to have been produced by one of the most intense coronal mass ejections in history, very near the maximum intensity that the Sun is thought to be capable of producing. It is also notable for the fact that it is the first time where the phenomena of auroral activity and electricity were unambiguously linked. This insight was made possible not only due to scientific magnetometer measurements of the era but also as a result of a significant portion of the 125,000 miles (201,000 km) of telegraph lines then in service being significantly disrupted for many hours throughout the storm. Some telegraph lines however seem to have been of the appropriate length and orientation to produce a sufficient geomagnetically induced current from the electromagnetic field to allow for continued communication with the telegraph operators' power supplies switched off. The following conversation occurred between two operators of the American Telegraph Line between Boston and Portland, Maine, on the night of 2 September 1859 and reported in the Boston Traveler:

Boston operator (to Portland operator): "Please cut off your battery [power source] entirely for fifteen minutes."
Portland operator: "Will do so. It is now disconnected."
Boston: "Mine is disconnected, and we are working with the auroral current. How do you receive my writing?"
Portland: "Better than with our batteries on. – Current comes and goes gradually."
Boston: "My current is very strong at times, and we can work better without the batteries, as the aurora seems to neutralize and augment our batteries alternately, making current too strong at times for our relay magnets. Suppose we work without batteries while we are affected by this trouble."
Portland: "Very well. Shall I go ahead with business?"
Boston: "Yes. Go ahead."

The conversation was carried on for around two hours using no battery power at all and working solely with the current induced by the aurora, and it was said that this was the first time on record that more than a word or two was transmitted in such manner.[25] Such events led to the general conclusion that

The effect of the Aurora on the electric telegraph is generally to increase or diminish the electric current generated in working the wires. Sometimes it entirely neutralizes them, so that, in effect, no fluid is discoverable in them . The aurora borealis seems to be composed of a mass of electric matter, resembling in every respect, that generated by the electric galvanic battery. The currents from it change coming on the wires, and then disappear: the mass of the aurora rolls from the horizon to the zenith.[27]

Origin

The ultimate energy source of the aurora is the solar wind flowing past the Earth. The magnetosphere and solar wind consist of plasma (ionized gas), which conducts electricity. It is well known (since Michael Faraday's [1791 – 1867] work around 1830) that when an electrical conductor is placed within a magnetic field while relative motion occurs in a direction that the conductor cuts across (or is cut by), rather than along, the lines of the magnetic field, an electric current is said to be induced into that conductor and electrons will flow within it. The amount of current flow is dependent upon a) the rate of relative motion, b) the strength of the magnetic field, c) the number of conductors ganged together and d) the distance between the conductor and the magnetic field, while the direction of flow is dependent upon the direction of relative motion. Dynamos make use of this basic process ("the dynamo effect"), any and all conductors, solid or otherwise are so affected including plasmas or other fluids.

In particular the solar wind and the magnetosphere are two electrically conducting fluids with such relative motion and should be able (in principle) to generate electric currents by "dynamo action", in the process also extracting energy from the flow of the solar wind. The process is hampered by the fact that plasmas conduct easily along magnetic field lines, but not so easily perpendicular to them. So it is important that a temporary magnetic connection be established between the field lines of the solar wind and those of the magnetosphere, by a process known as magnetic reconnection. It happens most easily with a southward slant of interplanetary field lines, because then field lines north of Earth approximately match the direction of field lines near the north magnetic pole (namely, into Earth), and similarly near the south magnetic pole. Indeed, active auroras (and related "substorms") are much more likely at such times. Electric currents originating in such way apparently give auroral electrons their energy. The magnetospheric plasma has an abundance of electrons: some are magnetically trapped, some reside in the magnetotail, and some exist in the upward extension of the ionosphere, which may extend (with diminishing density) some 25,000 km around Earth.

Bright auroras are generally associated with Birkeland currents (Schield et al., 1969;[28] Zmuda and Armstrong, 1973[29]) which flow down into the ionosphere on one side of the pole and out on the other. In between, some of the current connects directly through the ionospheric E layer (125 km); the rest ("region 2") detours, leaving again through field lines closer to the equator and closing through the "partial ring current" carried by magnetically trapped plasma. The ionosphere is an ohmic conductor, so such currents require a driving voltage, which some dynamo mechanism can supply. Electric field probes in orbit above the polar cap suggest voltages of the order of 40,000 volts, rising up to more than 200,000 volts during intense magnetic storms.

Ionospheric resistance has a complex nature, and leads to a secondary Hall current flow. By a strange twist of physics, the magnetic disturbance on the ground due to the main current almost cancels out, so most of the observed effect of auroras is due to a secondary current, the auroral electrojet. An auroral electrojet index (measured in nanotesla) is regularly derived from ground data and serves as a general measure of auroral activity.

However, ohmic resistance is not the only obstacle to current flow in this circuit. The convergence of magnetic field lines near Earth creates a "mirror effect" that turns back most of the down-flowing electrons (where currents flow upwards), inhibiting current-carrying capacity. To overcome this, part of the available voltage appears along the field line ("parallel to the field"), helping electrons overcome that obstacle by widening the bundle of trajectories reaching Earth; a similar "parallel potential" is used in "tandem mirror" plasma containment devices. A feature of such voltage is that it is concentrated near Earth (potential proportional to field intensity; Persson, 1963[30]), and indeed, as deduced by Evans (1974) and confirmed by satellites, most auroral acceleration occurs below 10,000 km. Another indicator of parallel electric fields along field lines are beams of upwards flowing O+ ions observed on auroral field lines.

Some O+ ions ("conics") also seem accelerated in different ways by plasma processes associated with the aurora. These ions are accelerated by plasma waves, in directions mainly perpendicular to the field lines. They therefore start at their own "mirror points" and can travel only upwards. As they do so, the "mirror effect" transforms their directions of motion, from perpendicular to the line to lying on a cone around it, which gradually narrows down.

In addition, the aurora and associated currents produce a strong radio emission around 150 kHz known as auroral kilometric radiation (AKR, discovered in 1972). Ionospheric absorption makes AKR observable from space only.

These "parallel potentials" accelerate electrons to auroral energies and seem to be a major source of aurora. Other mechanisms have also been proposed, in particular, Alfvén waves, wave modes involving the magnetic field first noted by Hannes Alfvén (1942), which have been observed in the lab and in space. The question is however whether these waves might just be a different way of looking at the above process, because this approach does not point out a different energy source, and many plasma bulk phenomena can also be described in terms of Alfvén waves.

Other processes are also involved in the aurora, and much remains to be learned. Auroral electrons created by large geomagnetic storms often seem to have energies below 1 keV, and are stopped higher up, near 200 km. Such low energies excite mainly the red line of oxygen, so that often such auroras are red. On the other hand, positive ions also reach the ionosphere at such time, with energies of 20–30 keV, suggesting they might be an "overflow" along magnetic field lines of the copious "ring current" ions accelerated at such times, by processes different from the ones described above.

Sources and types

Understanding is very incomplete. There are three possible main sources:

  1. Dynamo action with the solar wind flowing past Earth, possibly producing quiet auroral arcs ("directly driven" process). The circuit of the accelerating currents and their connection to the solar wind are uncertain.
  2. Dynamo action involving plasma squeezed towards Earth by sudden convulsions of the magnetotail ("magnetic substorms"). Substorms tend to occur after prolonged spells (hours) during which the interplanetary magnetic field has an appreciable southward component, leading to a high rate of interconnection between its field lines and those of Earth. As a result the solar wind moves magnetic flux (tubes of magnetic field lines, moving together with their resident plasma) from the day side of Earth to the magnetotail, widening the obstacle it presents to the solar wind flow and causing it to be squeezed harder. Ultimately the tail plasma is torn ("magnetic reconnection"); some blobs ("plasmoids") are squeezed tailwards and are carried away with the solar wind; others are squeezed towards Earth where their motion feeds large outbursts of aurora, mainly around midnight ("unloading process"). Geomagnetic storms have similar effects, but with greater vigor. The big difference is the addition of many particles to the plasma trapped around Earth, enhancing the "ring current" it carries. The resulting modification of Earth's field makes auroras visible at middle latitudes, on field lines much closer to the equator.
  3. Satellite images of the aurora from above show a "ring of fire" along the auroral oval (see above), often widest at midnight. That is the "diffuse aurora", not distinct enough to be seen by the eye. It does not seem to be associated with acceleration by electric currents (although currents and their arcs may be embedded in it) but to be due to electrons leaking out of the magnetotail.

Any magnetic trapping is leaky—there always exists a bundle of directions ("loss cone") around the guiding magnetic field lines where particles are not trapped but escape. In the radiation belts of Earth, once particles on such trajectories are gone, new ones only replace them very slowly, leaving such directions nearly "empty". In the magnetotail, however, particle trajectories seem to be constantly reshuffled, probably when the particles cross the very weak field near the equator. As a result, the flow of electrons in all directions is nearly the same ("isotropic"), and that assures a steady supply of leaking electrons.

The energization of such electrons comes from magnetotail processes. The leakage of negative electrons does not leave the tail positively charged, because each leaked electron lost to the atmosphere is quickly replaced by a low energy electron drawn upwards from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics.

Other types of auroras have been observed from space, e.g. "poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. There are other interesting effects such as flickering aurora, "black aurora" and subvisual red arcs. In addition to all these, a weak glow (often deep red) has been observed around the two polar cusps, the "funnels" of field lines separating the ones that close on the day side of Earth from lines swept into the tail. The cusps allow a small amount of solar wind to reach the top of the atmosphere, producing an auroral glow.

On other planets

Both Jupiter and Saturn have magnetic fields much stronger than Earth's (Jupiter's equatorial field strength is 4.3 gauss, compared to 0.3 gauss for Earth), and both have large radiation belts. Auroras have been observed on both, most clearly with the Hubble Space Telescope. Uranus and Neptune have also been observed to have auroras.[31]

The auroras on the gas giants seem, like Earth's, to be powered by the solar wind. In addition, however, Jupiter's moons, especially Io, are powerful sources of auroras on Jupiter. These arise from electric currents along field lines ("field aligned currents"), generated by a dynamo mechanism due to the relative motion between the rotating planet and the moving moon. Io, which has active volcanism and an ionosphere, is a particularly strong source, and its currents also generate radio emissions, studied since 1955. Auroras have also been observed on Io, Europa, and Ganymede themselves, e.g., using the Hubble Space Telescope. These Auroras have also been observed on Venus and Mars. Because Venus has no intrinsic (planetary) magnetic field, Venusian auroras appear as bright and diffuse patches of varying shape and intensity, sometimes distributed across the full planetary disc. Venusian auroras are produced by the impact of electrons originating from the solar wind and precipitating in the night-side atmosphere. An aurora was also detected on Mars, on 14 August 2004, by the SPICAM instrument aboard Mars Express. The aurora was located at Terra Cimmeria, in the region of 177° East, 52° South. The total size of the emission region was about 30 km across, and possibly about 8 km high. By analyzing a map of crustal magnetic anomalies compiled with data from Mars Global Surveyor, scientists observed that the region of the emissions corresponded to an area where the strongest magnetic field is localized. This correlation indicates that the origin of the light emission was a flux of electrons moving along the crust magnetic lines and exciting the upper atmosphere of Mars.[31][32]

History of aurora theories

In the past theories have been proposed to explain the phenomenon. These theories are now obsolete.

Images

Images of auroras are significantly more common today due to the rise of use of digital cameras that have high enough sensitivities.[34] Film and digital exposure to auroral displays is fraught with difficulties, particularly if faithfulness of reproduction is an objective. Due to the different spectral energy present, and changing dynamically throughout the exposure, the results are somewhat unpredictable. Different layers of the film emulsion respond differently to lower light levels, and choice of film can be very important. Longer exposures aggregate the rapidly changing energy and often blanket the dynamic attribute of a display. Higher sensitivity creates issues with graininess.

David Malin pioneered multiple exposure using multiple filters for astronomical photography, recombining the images in the laboratory to recreate the visual display more accurately.[35] For scientific research, proxies are often used, such as ultra-violet, and re-coloured to simulate the appearance to humans. Predictive techniques are also used, to indicate the extent of the display, a highly useful tool for aurora hunters.[36] Terrestrial features often find their way into aurora images, making them more accessible and more likely to be published by the major websites.[37] It is possible to take excellent images with standard film (using ISO ratings between 100 and 400) and a single-lens reflex camera with full aperture, a fast lens (f1.4 50 mm, for example), and exposures between 10 and 30 seconds, depending on the aurora's display strength.[38]

Early work on the imaging of the auroras was done in 1949 by the University of Saskatchewan using the SCR-270 radar.

In traditional and popular culture

In Bulfinch's Mythology from 1855 by Thomas Bulfinch there is the claim that in Norse mythology:

The Valkyrior are warlike virgins, mounted upon horses and armed with helmets and spears. /.../ When they ride forth on their errand, their armour sheds a strange flickering light, which flashes up over the northern skies, making what men call the "aurora borealis", or "Northern Lights".[39]

While a striking notion, there is not a vast body of evidence in the Old Norse literature supporting this assertion. Although auroral activity is common over Scandinavia and Iceland today, it is possible that the Magnetic North Pole was considerably further away from this region during the centuries before the documentation of Norse mythology, thus explaining the lack of references.[40]

The first Old Norse account of norðrljós is found in the Norwegian chronicle Konungs Skuggsjá from AD 1230. The chronicler has heard about this phenomenon from compatriots returning from Greenland, and he gives three possible explanations: that the ocean was surrounded by vast fires, that the sun flares could reach around the world to its night side, or that glaciers could store energy so that they eventually became fluorescent.[41]

In ancient Roman mythology, Aurora is the goddess of the dawn, renewing herself every morning to fly across the sky, announcing the arrival of the sun. The persona of Aurora the goddess has been incorporated in the writings of Shakespeare, Lord Tennyson and Thoreau.

See also

References

  1. ^ a b Feldstein, Y. I. (1963). "Some problems concerning the morphology of auroras and magnetic disturbances at high latitudes". Geomagnetism and Aeronomy 3: 183–192. 
  2. ^ a b Feldstein, Y. I. (1986). "A Quarter Century with the Auroral Oval". EOS 67 (40): 761. Bibcode 1986EOSTr..67..761F. doi:10.1029/EO067i040p00761-02. 
  3. ^ E. J. Weber et al. (1984). "F layer ionization patches in the polar cap". J. Geophys. Res. 89 (A3): 1683–94. Bibcode 1984JGR....89.1683W. doi:10.1029/JA089iA03p01683. 
  4. ^ Frank, L. A. et al. (1986). "The theta aurora". J. Geophys. Res. 91 (A3): 3177–3224. doi:10.1029/JA091iA03p03177. 
  5. ^ Paul Fleury Mottelay Bibliographical History of Electricity and Magnetism. Read Books, 2007, ISBN 1406754765. p 114.
  6. ^ N. Østgaard, S. B. Mende, H. U. Frey, J. B. Sigwarth, A. Asnes, J. M. Weygand (2007). "Auroral conjugacy studies based on global imaging". J. Of Atmos. And Solar-Terres. Phys. 69 (3): 249–55. doi:10.1016/j.jastp.2006.05.026. 
  7. ^ "University of Minnesota Style Manual". .umn.edu. 18 July 2007. http://www1.umn.edu/urelate/style/sciterminology.html#Anchor-37516. Retrieved 5 August 2010. 
  8. ^ "NASA – NASA and World Book". Nasa.gov. 2011-02-07. http://www.nasa.gov/worldbook/aurora_worldbook.html. Retrieved 2011-07-26. 
  9. ^ Birkeland, Kristian (1908 (section 1), 1913 (section 2)). The Norwegian Aurora Polaris Expedition 1902–1903. New York: Christiania (Oslo): H. Aschehoug & Co.. p. 720. http://www.archive.org/details/norwegianaurorap01chririch.  out-of-print, full text online
  10. ^ "NASA – THEMIS Satellites Discover What Triggers Eruptions of the Northern Lights". Nasa.gov. http://www.nasa.gov/mission_pages/themis/auroras/themis_power.html. Retrieved 2011-07-26. 
  11. ^ Angelopoulos, V.; McFadden, J. P.; Larson, D.; Carlson, C. W.; Mende, S. B.; Frey, H.; Phan, T.; Sibeck, D. G. et al. (2008). "Tail Reconnection Triggering Substorm Onset". Science 321 (5891): 931–5. doi:10.1126/science.1160495. PMID 18653845. 
  12. ^ "Secret of Colorful Auroras Revealed". Space.com. 2008-07-24. http://www.space.com/scienceastronomy/080724-themis-aurora-mystery.html. Retrieved 2011-07-26. 
  13. ^ Fritz, Hermann (1881). "Das Polarlicht."
  14. ^ S. Tromholt, Om nordlysets perioder/Sur les périodes de l'aurore boréale, l'annuaire 1880, Inst. Météorol. Danois, Copenhagen, 1882.
  15. ^ Alaska.edu, Solar wind forecast from a University of Alaska website
  16. ^ Shue, J.-H; J .K. Chao, H .C. Fu, C. T. Russell , P. Song, K. K. Khurana, and H. J. Singer (May 1997). "A new functional form to study the solar wind control of the magnetopause size and shape". J. Geophys. Res. 102 (A5): 9497–9511. Bibcode 1997JGR...102.9497S. doi:10.1029/97JA00196. 
  17. ^ Lyons, L. R.; H.-J. Kim, X. Xing, S. Zou, D.-Y. Lee, C. Heinselman, M. J. Nicolls, V. Angelopoulos, D. Larson, J. McFadden, A. Runov, and K.-H. Fornacon (2009). "Evidence that solar wind fluctuations substantially affect global convection and substorm occurrence". J. Geophys. Res. 114 (A11306): 1–14. Bibcode 2009JGRA..11411306L. doi:10.1029/2009JA014281. 
  18. ^ Stamper, J.; M. Lockwood and M. N. Wild (December 1999). "Solar causes of the long-term increase in geomagnetic activity". J. Geophys. Res. 104 (A12): 28,325–28,342. Bibcode 1999JGR...10428325S. doi:10.1029/1999JA900311. 
  19. ^ Papitashvili, V. O.; N. E. Papitashva and J .H . King (September 2000). "Solar cycle effects in planetary geomagnetic activity: Analysis of 36-year long OMNI dataset". Geophys. Res. Lett. 27 (17): 2797–2800. Bibcode 2000GeoRL..27.2797P. doi:10.1029/2000GL000064. 
  20. ^ Balfour Stewart (1860–1862). "On the Great Magnetic Disturbance of 28 August to 7 September 1859, as Recorded by Photography at the Kew Observatory". Proceedings of the Royal Society of London 11,: 407–410. doi:10.1098/rspl.1860.0086. JSTOR 111936. 
  21. ^ Balfour Stewart (1861). "On the Great Magnetic Disturbance Which Extended from 28 August to 7 September 1859, as Recorded by Photography at the Kew Observatory". Philosophical Transactions of the Royal Society of London 151: 423–430. doi:10.1098/rstl.1861.0023. JSTOR 108745. 
  22. ^ The Aurora Borealis; The Brilliant Display on Sunday Night. Phenomena Connected with the Event. Mr. Meriam's Observations on the Aurora—E. M. Picks Up a Piece of the Auroral Light. The Aurora as Seen Elsewhere—Remarkable Electrical Effects New York Times, 30 August 1859, Tuesday; Page 1, 3087 words
  23. ^ a b Auroa Australis; Magnificent Display on Friday Morning Mr. Merlam's Opinions on the Bareul Light—One of his Friends Finds a Place of the Aurora on his Lion-corp. The Aurural Display in Boston. New York Times, 3 September 1859, Saturday; Page 4, 1150 words
  24. ^ Auroral Phenomena; Remarkable Effect of the Aurora Upon the Telegraph Wires New York Times, 5 September 1859, Monday; Page 2, 1683 words
  25. ^ a b Green, J; Boardsen, S; Odenwald, S; Humble, J; Pazamickas, K (2006). "Eyewitness reports of the great auroral storm of 1859". Advances in Space Research 38 (2): 145–154. doi:10.1016/j.asr.2005.12.021. 
  26. ^ Ryerson, et al. The Late Aurora Borealis and the Telegraph, The Journal of Education for Upper Canada; 1859, p. 132
  27. ^ The British Colonist, Vol. 2 No. 56, 19 October 1859, page 1, accessed online at BritishColonist.ca, on 19 February 2009.
  28. ^ Schield, M. A.; Freeman, J. W.; Dessler, A. J. (1969). "A Source for Field-Aligned Currents at Auroral Latitudes". Journal of Geophysical Research 74: 247–256. Bibcode 1969JGR....74..247S. doi:10.1029/JA074i001p00247. 
  29. ^ Armstrong, J. C.; Zmuda, A. J. (1973). "Triaxial magnetic measurements of field-aligned currents at 800 kilometers in the auroral region: Initial results". Journal of Geophysical Research 78 (28): 6802–6807. Bibcode 1973JGR....78.6802A. doi:10.1029/JA078i028p06802. 
  30. ^ Persson, Hans (1963). "Electric field along a magnetic line of force in a low-density plasma". Physics of Fluids 6 (12): 1756–1759. Bibcode 1963PhFl....6.1756P. doi:10.1063/1.1711018. 
  31. ^ a b "ESA Portal – Mars Express discovers aurorae on Mars". Esa.int. 11 August 2004. http://www.esa.int/esaCP/SEMLQ71DU8E_index_0.html. Retrieved 5 August 2010. 
  32. ^ "Mars Express Finds Auroras on Mars". Universe Today. February 18, 2006. http://www.universetoday.com/am/publish/mars_express_aurorae.html?1722006. Retrieved 5 August 2010. 
  33. ^ "Scientist and Inventor: Benjamin Franklin: In His Own Words... (AmericanTreasures of the Library of Congress)". Loc.gov. 2010-08-16. http://www.loc.gov/exhibits/treasures/franklin-scientist.html. Retrieved 2011-07-26. 
  34. ^ "News and information about meteor showers, solar flares, auroras, and near-Earth asteroids". SpaceWeather.com. http://www.spaceweather.com/. Retrieved 5 August 2010. 
  35. ^ "Astronomical photographs from David Malin Images". www.davidmalin.com. http://www.davidmalin.com/index.html. Retrieved 3 August 2010. 
  36. ^ "NOAA POES Auroral Activity". www.swpc.noaa.gov. http://www.swpc.noaa.gov/pmap/index.html. Retrieved 3 August 2010. 
  37. ^ "SpaceWeather.com". SpaceWeather.com. http://www.spaceweather.com/. Retrieved 2011-07-26. 
  38. ^ Aurora image (JPG)
  39. ^ "Bullfinch's Mythology". Mythome.org. 10 February 1996. http://www.mythome.org/bxxxviii.html. Retrieved 5 August 2010. 
  40. ^ "The Aurora Borealis and the Vikings". Vikinganswerlady.com. http://www.vikinganswerlady.com/njordrljos.htm. Retrieved 5 August 2010. 
  41. ^ "Norrsken history". Irf.se. 2003-11-12. http://www.irf.se/norrsken/Norrsken_history.html. Retrieved 2011-07-26. 


  • "Secrets of the Polar Aurora"
  • "Exploration of the Earth's magnetosphere" – overview of the magnetosphere, including auroras; and including extensive bibliographies of scientific articles
  • Eather, Robert H. (1980). Majestic Lights: The Aurora in Science, History, and The Arts. Washington, DC: American Geophysical Union. ISBN 0-87590-215-4.  (323 pages)
  • Syun-Ichi Akasofu (April 2002). "Secrets of the Aurora Borealis". Alaska Geographic Series (Graphic Arts Center Publishing Company) 29 (1). 
  • Savage, Candace Sherk (1994 / 2001). Aurora: The Mysterious Northern Lights. San Francisco: Sierra Club Books / Firefly Books. ISBN 0-87156-419-X.  (144 pages)
  • Hultqvist, Bengt (2007). "The Aurora". In Kamide, Y.; Chian, A. Handbook of the Solar-Terrestrial Environment. Berlin Heidelberg: Springer-Verlag. pp. 331–354. doi:10.1007/978-3-540-46315-3_13. ISBN 978-3-540-46314-6. 
  • Sandholt, Even; Carlson, Herbert C.; and Egeland, Alv (2002). "Optical Aurora". Dayside and Polar Cap Aurora. Netherlands: Springer Netherlands. pp. 33–51. doi:10.1007/0-306-47969-9_3. ISBN 978-0-306-47969-4. 
  • Phillips, Tony (21 October 2001). "'tis the Season for Auroras". NASA. http://science.nasa.gov/headlines/y2001/ast26oct_1.htm. Retrieved 15 May 2006. 

External links